Enantiospecific Syntheses of (+)- and (-)-Altholactone (Goniothalenol)

John G. Gillhouley and Tony K. M. Shing*

Department of Chemistry, The Victoria University of Manchester, Manchester M13 9PL, U.K.

(+)-Altholactone (1) and its enantiomer (2) have been synthesised from p-gulonolactone and p-mannose, respectively, with stereocontrolled reduction (Et₃SiH/BF₃·Et₂O) of the lactols (4) and (10) as a key step.

Altholactone has been isolated from an unidentified Polyathea species¹ and from the stem bark of *Goniothalamus Giganteus* (Annonaceae);² it has been demonstrated to be active against P388 leukemia *in vivo* and cytotoxic to brine shrimp *in vitro*.² X-Ray crystallography has enabled the assignment of structure (1) or its enantiomer (2).² Very recently the absolute configuration (1) was assigned on the basis of a total synthesis³ from D-glucose; this prompted us to disclose our independent synthetic endeavour. We now describe short and enantiospecific syntheses of (+)- and (-)-altholactone from D-gulonolactone and D-mannose, respectively, thereby confirming the absolute configuration (1) for the natural material.

The route to (+)-altholactone (1) is shown in Scheme 1. Commercially available p-gulonolactone (3) was converted into the corresponding diacetonide, which reacted with phenyl-lithium to give the lactol (4),† m.p. $103-105\,^{\circ}\text{C}$; $[\alpha]_D^{20}-54.5^{\circ}$ (c 1.4 in CHCl₃). Stereocontrolled reduction of (4) with Et₃SiH mediated by BF₃·Et₂O⁴ proceeded smoothly with concomitant partial deacetonation, furnishing exclusively the α -p-C-phenyl derivative (5), $[\alpha]_D^{20}-45.0^{\circ}$ (c 0.3 in CHCl₃). Presumably, the approach of the hydride to the less

hindered α -face of the incipient carbocation secured the desired stereochemistry of the phenyl moiety (Figure 1). Oxidation of the diol (5) with periodate, followed by immediate Wittig olefination, afforded stereoselectively⁵ the Z-olefin (6) (Z:E ratio 6:1), $[\alpha]_D^{20} + 55.0^\circ$ (c 0.4 in CHCl₃). Deacetonation of (6) occurred with spontaneous lactonisation, giving the 7-epi-altholactone (7),‡ m.p. 121—123 °C; $[\alpha]_D^{22} + 23.5^\circ$ (c 0.4 in EtOH). The Walden inversion of the free hydroxy group in (7), a transformation which would complete the synthesis of altholactone, proved difficult. After considerable experimentation, nucleophilic displacement of the trifluoromethanesulphonate derived from (7) with caesium propionate⁶ was successful and the ester (8) was isolated; m.p. 174—175 °C; $[\alpha]_D^{20} + 139.0^\circ$ (c 0.7 in CHCl₃). The ester

[‡] The antitumour activities of these new 2-pyrones will be reported later.

[†] All new compounds gave satisfactory analytical and spectral data.

Scheme 1. Reagents: i, Me₂CO, H₂SO₄; ii, PhLi, tetrahydrofuran (THF), -78 °C; iii, Et₃SiH, BF₃ *Et₂O, MeCN, -20 °C; iv, NaIO₄, aq. MeOH; then Ph₃P=CHCO₂Me; v, aq. CF₃CO₂H (aq. TFA); vi, (CF₃SO₂)₂O, CH₂Cl₂, pyridine, -10 °C; vii, EtCO₂Cs, HCONMe₂; viii, aq. NaOH; then TFA.

(8) was then saponified to yield (+)-altholactone (1), $[\alpha]_D^{20}$ + 185.2° (c 0.2 in EtOH).

On the other hand, (-)-altholactone (2) was synthesised from D-mannose (9) as shown in Scheme 2. Thus acetonation of (9) followed by oxidation and subsequent reaction with phenyl-lithium gave the lactol (10), m.p. 111-112 °C; $[\alpha]_D^{22} + 49.0^{\circ}$ (c 1.3 in CHCl₃), which was reduced to the β -D-C-phenyl derivative (11), m.p. 104-106 °C; $[\alpha] + 62.0^{\circ}$ (c 1.6 in CHCl₃). The diol (11) was then transformed into the Z-olefin (12) [enantiomeric with (6)], $[\alpha]_D^{20} - 57.5^{\circ}$ (c 1.0 in CH₂Cl₂), and into the lactone (13),‡ m.p. 121-122 °C; $[\alpha]_D^{20} - 24.1^{\circ}$ (c 1.0 in EtOH). Esterification of (13) followed by

Scheme 2. Reagents: i, Me₂CO, H₂SO₄; ii, pyridinium chlorochromate, 3 Å molecular sieves, CH₂Cl₂; iii, PhLi, THF, -78 °C; iv, Et₃SiH, BF₃*Et₂O, MeCN, -20 °C; v, NaIO₄, aq. MeOH; then Ph₃P=CHCO₂Me; vi, aq. TFA; vii (CF₃SO₂)₂O, CH₂Cl₂, pyridine, -10 °C; viii, EtCO₂Cs, HCONMe₂; ix, aq. NaOH; then TFA.

nucleophilic substitution afforded the ester (14), m.p. 174—176°C; $[\alpha]_D^{23} - 127^\circ$ (c 0.8 in CHCl₃), which was saponified to yield the enantiomeric altholactone (2),‡ $[\alpha]_D^{22} - 180.5^\circ$ (c 0.2 in EtOH).

The spectroscopic data (i.r., mass, and ${}^{1}H$ n.m.r.) of both synthetic (1) and (2) are identical with those reported, 2 and since the reported $[\alpha]_{D}$ values of altholactone are + 188.0° (EtOH) 1 and + 184.7° (EtOH), 2 the absolute configuration of natural altholactone must be (1).

We thank Professor J. K. Sutherland for discussion and the S.E.R.C. for a studentship (to J.G.G.).

Received, 17th March 1988; Com. 8/01087K

References

- 1 J. W. Loder and R. M. Nearn, Heterocycles, 1977, 7, 113.
- 2 A. A. E. El-Zayat, N. R. Ferrigni, T. G. McCloud, A. T. McKenzie, S. R. Byrn, J. M. Cassady, C-j Chang, and J. L. McLaughlin, *Tetrahedron Lett.*, 1985, 955.
- 3 J. P. Gesson, J. C. Jacquesy, and M. Mondon, *Tetrahedron Lett.*, 1987, 3949.
- 4 M. G. Adlington, M. Orfanopoulos, and J. L. Fry, *Tetrahedron Lett.*, 1976, 2955.
- 5 J. M. Tronchet and B. Gentile, Helv. Chim. Acta, 1979, 62, 2091.
- 6 W. H. Kruizinga, B. Striztreen, and R. M. Kellogg, J. Org. Chem., 1981, 46, 4321.